VIBEX: an expert system for vibration fault diagnosis of rotating machinery using decision tree and decision table
نویسندگان
چکیده
This paper proposes an expert system called VIBEX (VIBration EXpert) to aid plant operators in diagnosing the cause of abnormal vibration for rotating machinery. In order to automatize the diagnosis, a decision table based on the cause-symptom matrix is used as a probabilistic method for diagnosing abnormal vibration. Also a decision tree is used as the acquisition of structured knowledge in the form of concepts is introduced to build a knowledge base which is indispensable for vibration expert systems. The decision tree is a technique used for building knowledge-based systems by the inductive inference from examples and plays a role itself as a vibration diagnostic tool. The proposed system has been successfully implemented on Microsoft Windows environment and is written in Microsoft Visual Basic and Visual CCC. To validate the system performance, the diagnostic system was tested with some examples using the two diagnostic methods. q 2005 Published by Elsevier Ltd.
منابع مشابه
Bearing Fault Detection Based on Maximum Likelihood Estimation and Optimized ANN Using the Bees Algorithm
Rotating machinery is the most common machinery in industry. The root of the faults in rotating machinery is often faulty rolling element bearings. This paper presents a technique using optimized artificial neural network by the Bees Algorithm for automated diagnosis of localized faults in rolling element bearings. The inputs of this technique are a number of features (maximum likelihood estima...
متن کاملFault Detection of Anti-friction Bearing using Ensemble Machine Learning Methods
Anti-Friction Bearing (AFB) is a very important machine component and its unscheduled failure leads to cause of malfunction in wide range of rotating machinery which results in unexpected downtime and economic loss. In this paper, ensemble machine learning techniques are demonstrated for the detection of different AFB faults. Initially, statistical features were extracted from temporal vibratio...
متن کاملA Novel Intelligent Fault Diagnosis Approach for Critical Rotating Machinery in the Time-frequency Domain
The rotating machinery is a common class of machinery in the industry. The root cause of faults in the rotating machinery is often faulty rolling element bearings. This paper presents a novel technique using artificial neural network learning for automated diagnosis of localized faults in rolling element bearings. The inputs of this technique are a number of features (harmmean and median), whic...
متن کاملFault Diagnosis of Helical Gear Box Using Decision Tree and Best-First Tree
Gear is one of critical transmission elements, found its wide applications in small, medium and large machineries. It is well proved that vibration signals acquired from a rotating machine comprise of the dynamic information about the health condition of the rotating machine. This paper uses vibration signals acquired from machinery comprising of gears in good and simulated faulty conditions fo...
متن کاملDiagnosis of Coronary Artery Disease via a Novel Fuzzy Expert System Optimized by Cuckoo Search
In this paper, we propose a novel fuzzy expert system for detection of Coronary Artery Disease, using cuckoo search algorithm. This system includes three phases: firstly, at the stage of fuzzy system design, a decision tree is used to extract if-then rules which provide the crisp rules required for Coronary Artery Disease detection. Secondly, the fuzzy system is formed by setting the intervals ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Expert Syst. Appl.
دوره 28 شماره
صفحات -
تاریخ انتشار 2005